şŁ˝ÇÉçÇř

Nouvelles

Saut quantique vers l’informatique de nouvelle génération

±ĘłÜ˛ú±ôľ±Ă©: 11 May 2010

Des chercheurs de şŁ˝ÇÉçÇř apportent une contribution importante Ă  l’informatique quantique

Des physiciens de l’UniversitĂ© şŁ˝ÇÉçÇř ont Ă©laborĂ© un système pour mesurer l’énergie rĂ©sultant de l’ajout d’électrons Ă  des nanocristaux semi-conducteurs ou points quantiques : une technologie susceptible de rĂ©volutionner l’informatique et plusieurs disciplines scientifiques. Le professeur Peter GrĂĽtter, vice-doyen (recherche et formations de 2e/3e cycles) Ă  la FacultĂ© des sciences de şŁ˝ÇÉçÇř, explique que son Ă©quipe de recherche a mis au point un capteur de force, Ă©galement appelĂ© capteur cantilever, qui permet simultanĂ©ment l’extraction et l’ajout d’électrons Ă  un point quantique, de mĂŞme que la mesure de l’énergie dĂ©gagĂ©e au cours de cette opĂ©ration.

La possibilité de mesurer l’énergie à des niveaux infinitésimaux est une étape importante dans l’élaboration de composés qui seront éventuellement appelés à remplacer les puces de silicum des ordinateurs et feront la marque de l’informatique de nouvelle génération. Actuellement, les ordinateurs fonctionnent à l’aide de processeurs munis de transistors en mode actif ou inactif (conducteurs et semi-conducteurs), alors que l’informatique quantique permet aux processeurs de travailler dans différents états, ce qui augmente considérablement leur vitesse de traitement, tout en réduisant leur taille de manière importante.

Le terme « quantum » désigne la quantité minimale d’une grandeur physique pouvant séparer deux valeurs de cette grandeur. La connaissance de ces niveaux d’énergie permet aux scientifiques de comprendre et de définir les propriétés électroniques des systèmes à échelle nanométrique qu’ils conçoivent.

« Nous caractérisons les propriétés de transport optique et électronique », explique le professeur Grütter. « Cette étape est essentielle à l’élaboration de composés susceptibles de remplacer les puces de silicum des ordinateurs contemporains. »

Les principes Ă©lectroniques des nanosystèmes dĂ©terminent Ă©galement leurs propriĂ©tĂ©s chimiques, si bien que les travaux des chercheurs pourraient tout Ă  fait dĂ©boucher sur des processus chimiques qui soient Ă  la fois plus Ă©cologiques et moins Ă©nergivores. Cette technologie pourrait par exemple ĂŞtre appliquĂ©e aux systèmes d’éclairage, en utilisant des nanoparticules pour amĂ©liorer leur efficacitĂ© Ă©nergĂ©tique. « Nous pensons que cette mĂ©thode aura de nombreuses applications importantes en recherche fondamentale et appliquĂ©e », explique Lynda Cockins du DĂ©partement de physique de şŁ˝ÇÉçÇř.

Le principe de ce capteur cantilever est relativement simple : « Le cantilever mesure environ 0,5 mm (soit l’épaisseur d’un ongle). Il s’agit grosso modo d’un oscillateur harmonique amorti très simple, l’équivalent mathématique d’une balançoire pour enfant que l’on pousse », explique le professeur Grütter. « Le signal que nous mesurons est l’amortissement du cantilever, ce qui équivaut à la force nécessaire pour pousser l’enfant sur la balançoire afin qu’il se maintienne à une hauteur constante. Il s’agit de “l’amplitude d’oscillation”. »

Cette recherche, dont les rĂ©sultats ont Ă©tĂ© publiĂ©s en ligne hier après-midi sur le site de la revue Proceedings of the National Academy of Sciences, a Ă©tĂ© menĂ©e en collaboration avec les professeurs Aashish Clerk, Yoichi Miyahara et Steven D. Bennett du DĂ©partement de physique de şŁ˝ÇÉçÇř et des chercheurs de l’Institut des sciences des microstructures du Conseil national de recherches du Canada. Elle a bĂ©nĂ©ficiĂ© d’une subvention du Conseil de recherches en sciences naturelles et en gĂ©nie du Canada, du Fonds quĂ©bĂ©cois de la recherche sur la nature et les technologies, d’une bourse d’études Carl Reinhardt et de l’Institut canadien de recherches avancĂ©es.

Cette image reprĂ©sente l’énergie Ă©lectrostatique gĂ©nĂ©rĂ©e par l’ajout d’électrons Ă  un point quantique. Elle a Ă©tĂ© prise Ă  l’aide d’un microscope Ă  force atomique.  CrĂ©dit photographique : DĂ©partement de physique, UniversitĂ© şŁ˝ÇÉçÇř.

Back to top