海角社区

Please note: The Research + Innovation office will be closed for the holidays from noon on December 24 through January 2nd, inclusive. 鉂勶笍 Veuillez noter que le bureau de la Recherche et de l'Innovation sera ferm茅 pour les vacances du 24聽d茅cembre 脿 midi jusqu鈥檃u 2聽janvier inclus.

Event

Olszewski Lecture: Spatially Resolved Single-Cell Genomics & Cell Atlas of the Brain

Thursday, March 27, 2025 16:00to17:00
Montreal Neurological Institute de Grandpre Communications Centre, 3801 rue University, Montreal, QC, H3A 2B4, CA

The Neuro's Olszewski Lecture, established in 1986, honours Dr. Jerzy Olszewski (1913鈥1964), a pioneering neuroanatomist and neuropathologist. Invited to The Neuro by Dr. Wilder Penfield in 1948, Olszewski collaborated on the seminal Cytoarchitecture of the Human Brain Stem, advancing the understanding of brainstem structures and cementing his legacy in neuroscience.


To attend in person,

To view the lecture online,


Xiaowei Zhuang聽

Howard Hughes Medical Institute, Harvard University

Abstract: Cell and tissue functions arise from the coordinated activities of thousands of different genes. Understanding these functions requires imaging at the genome scale, which advances knowledge in many areas of biology, from the regulation of gene expression in cells to the development of cell fate and the organization of cell types in complex tissues. A single-cell genome-scale imaging method, multiplexed error-robust fluorescence in situ hybridization (MERFISH), was developed to enable spatially resolved single-cell transcriptomics, epigenomics, 3D-genomics, and functional genomics. This method allows for single-cell gene-expression profiling in intact tissues, facilitating the identification, spatial mapping, and functional investigation of distinct cell types within those tissues. Using this approach, molecularly defined, spatially resolved, and functionally annotated cell atlases of the brain have been created. This lecture will describe the MERFISH technology and its applications, with a particular focus on mapping the molecular, spatial, and functional organizations of distinct cell types in the brain.

Back to top