º£½ÇÉçÇø

Master of Science (M.Sc.); Parasitology (Thesis) — Bioinformatics (47 credits)

Note: This is the 2011–2012 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.

Offered by: Parasitology     Degree: Master of Science

Program Requirements

Thesis Courses (24 credits)

Required Courses (17 credits)

  • COMP 616D1 Bioinformatics Seminar (1.5 credits)

    Offered by: Computer Science (Faculty of Science)

    Administered by: Graduate Studies

    Overview

    Computer Science (Sci) : Introduction to current trends in Bioinformatics and closely related fields such as genomics and proteomics.

    Terms: Fall 2011

    Instructors: Hallett, Michael Trevor (Fall)

    • Restrictions: This seminar is restricted to graduate students in the Bioinformatics Option. Enrolment is limited to 30 students.

    • Note: The seminar will meet for 3 hours every second week over Fall and Winter semesters.

  • COMP 616D2 Bioinformatics Seminar (1.5 credits)

    Offered by: Computer Science (Faculty of Science)

    Administered by: Graduate Studies

    Overview

    Computer Science (Sci) : See COMP 616D1 for description.

    Terms: Winter 2012

    Instructors: Hallett, Michael Trevor (Winter)

  • PARA 600 Thesis Proposal for M.Sc (4 credits)

    Offered by: Parasitology (Agricultural & Environmental Sciences)

    Administered by: Graduate Studies

    Overview

    Parasitology : Comprises a written document outlining the proposed research objectives.

    Terms: Fall 2011, Winter 2012

    Instructors: Beech, Robin N (Fall) Beech, Robin N (Winter)

  • PARA 606 Parasitology Seminar (2 credits)

    Offered by: Parasitology (Agricultural & Environmental Sciences)

    Administered by: Graduate Studies

    Overview

    Parasitology : A seminar series in which students present seminars covering topics in parasitology, in areas relevant to their research interests. Students register for the course in their second term of residency. Attendance and participation are compulsory for M.Sc. students.

    Terms: Fall 2011, Winter 2012

    Instructors: Ribeiro, A Paula (Fall) Ribeiro, A Paula (Winter)

  • PARA 607 Parasitology Research Seminar (2 credits)

    Offered by: Parasitology (Agricultural & Environmental Sciences)

    Administered by: Graduate Studies

    Overview

    Parasitology : This is a required course for M.Sc. students. A seminar course in which students registered at the Institute of Parasitology present seminars on the results of their thesis research. Students register for the course in the final term prior to thesis submission.

    Terms: Fall 2011, Winter 2012

    Instructors: Ribeiro, A Paula (Fall) Ribeiro, A Paula (Winter)

  • PARA 635 Cell Biology and Infection (3 credits)

    Offered by: Parasitology (Agricultural & Environmental Sciences)

    Administered by: Graduate Studies

    Overview

    Parasitology : Research articles will be the primary source of information. This course will cover new principles in cell biology. In particular, the mechanisms by which gene expression is regulated through signal transduction pathways initiated at the cell surface will be presented.

    Terms: Winter 2012

    Instructors: Rohrbach, Petra; Stevenson, Mary M; Gruenheid, Samantha (Winter)

    • Prerequisite: students with some background in molecular biology

  • PARA 655 Host-Parasite Interactions (3 credits)

    Offered by: Parasitology (Agricultural & Environmental Sciences)

    Administered by: Graduate Studies

    Overview

    Parasitology : Lectures, tutorials and laboratory demonstrations of the principal factors which affect levels of parasite infection and treatment of infections in humans and animals. The integration and management of the host-parasite relationship in terms of transmission, population dynamics, environmental management, behaviour, immune responses, pathology, and pharmacology to decrease parasitic disease.

    Terms: Fall 2011

    Instructors: Prichard, Roger K; Scott, Marilyn; Geary, Timothy (Fall)

Complementary Courses (6 credits)

6 credits from the following courses:

  • BINF 621 Bioinformatics: Molecular Biology (3 credits)

    Offered by: Plant Science (Agricultural & Environmental Sciences)

    Administered by: Graduate Studies

    Overview

    Bioinformatics : The main problems related to the analysis of biological sequences (sequence comparison, homology, gene annotation, phylogenetic inference, comparative genomics) and the computational approaches (dynamic programming algorithms, Blast heuristics, hidden Markov models, Bayesian statistics).

    Terms: This course is not scheduled for the 2011-2012 academic year.

    Instructors: There are no professors associated with this course for the 2011-2012 academic year.

    • Restriction: Enrolment by students in the Bioinformatics option or by permission from the course coordinators only. Limited to 30 students.
  • BMDE 652 Bioinformatics: Proteomics (3 credits)

    Offered by: Biomedical Engineering (Faculty of Medicine and Health Sciences)

    Administered by: Graduate Studies

    Overview

    Biomedical Engineering : Overview of high-throughput proteomic technologies commonly employed to study the localization and function of all proteins in an organism, and the bioinformatic approaches to analyze raw data and deposit them in proteome databases.

    Terms: This course is not scheduled for the 2011-2012 academic year.

    Instructors: There are no professors associated with this course for the 2011-2012 academic year.

    • Prerequisite: Enrolment in Bioinformatics option program or permission by coordinators.
    • Note: The course is inter-disciplinary and is targeted to students with different scientific backgrounds. A substantial portion of marks will be given based on practical assignments.
  • BTEC 555 Structural Bioinformatics (3 credits)

    Offered by: Parasitology (Agricultural & Environmental Sciences)

    Overview

    Biotechnology : Fundamentals of protein structure and the application of tools for structure determination, how protein structure allows us to understand the complex biological functions, and how knowledge of protein structure can contribute to drug discovery.

    Terms: Winter 2012

    Instructors: Salavati, Reza (Winter)

    • Winter

    • 1-hr lecture, followed by 2 hrs of computer lab.

    • Prerequisite: Molecular biology or biochemistry, and basic bioinformatics, or permission of instructor.

  • COMP 618 Bioinformatics: Functional Genomics (3 credits)

    Offered by: Computer Science (Faculty of Science)

    Administered by: Graduate Studies

    Overview

    Computer Science (Sci) : Techniques related to microarrays (normalization, differential expression, class prediction, class discovery), the analysis of non-coding sequence data (identification of transcription factor binding sites), single nucleotide polymorphisms, the inference of biological networks, and integrative Bioinformatics approaches.

    Terms: Winter 2012

    Instructors: Hallett, Michael Trevor (Winter)

    • Prerequisite: Enrolment in Bioinformatics Option Program or permission of coordinators.

    • Restrictions: Enrolment by students in the Bioinformatics Option Program or by permission of course coordinators only. Computer Science graduate students not in the Bioinformatics Option Program need additional permission of the M.Sc. or Ph.D. Committee respectively.

  • PHGY 603 Systems Biology and Biophysics (3 credits)

    Offered by: Physiology (Faculty of Medicine and Health Sciences)

    Administered by: Graduate Studies

    Overview

    Physiology : Introduction to classical and current topics in biophysics and systems biology in order to model the control of gene expression and intracellular signal transduction, as well as gene spread in populations.

    Terms: This course is not scheduled for the 2011-2012 academic year.

    Instructors: There are no professors associated with this course for the 2011-2012 academic year.

    • Prerequisite: Knowledge of differential equations at the MATH 315 level or equivalent.
    • Notes: Enrolment is limited to 20 students per semester. The course is 1.5 hours of lecture and 1.5 hours of seminar per week. Readings will focus on classic and current journal articles.

Additional courses at the 500 or 600 level may be required at the discretion of the candidate's supervisory committee.

Faculty of Agricultural & Environmental Sciences—2011-2012 (last updated Aug. 18, 2011) (disclaimer)
Back to top