Note: This is the 2011–2012 edition of the eCalendar. Update the year in your browser's URL bar for the most recent version of this page, or click here to jump to the newest eCalendar.
Program Requirements
Revision, August 2011. Start of revision. The Major program in Neuroscience is a focused program for students interested in how the nervous system functions. It is highly interdisciplinary and borrows principles and methodologies from a number of fields including: biology, biochemistry, physiology, psychology, as well as mathematics, physics, computer science, and immunology. To ensure that students have the appropriate foundation, they are required to take 29 credits in lower-level courses from physiology, biology, mathematics, computer science, psychology, and ethics. While flexible, the program offers students a concentrated selection of 15 credits to be taken from one of three areas of current scientific activities in the neurosciences: Cell/Molecular, Neurophysiology/Computation, or Cognition/Behaviour. In addition, students select 21 credits from a wide array of upper-level complementary courses to obtain more specialized training in areas of neuroscience that best suit their interest. All course selections for the Major Neuroscience MUST be approved by an adviser. Contact Ryan Bouma at ryan.bouma [at] mcgill.ca. Students must take a minimum of 64 credits to complete this Major.Program Prerequisites
Notes on admission to the Neuroscience Major program: Please note that enrolment in the Neuroscience Major is limited to a total of 50 students per year. U0 students seeking admission to this program must have a minimum CGPA of 3.2 and have completed the courses listed below or equivalent.
* Students complete either MATH 139 OR MATH 140, but not both.
-
BIOL 112 Cell and Molecular Biology (3 credits)
Overview
Biology (Sci) : The cell: ultrastructure, division, chemical constituents and reactions. Bioenergetics: photosynthesis and respiration. Principles of genetics, the molecular basis of inheritance and biotechnology.
Terms: Winter 2012
Instructors: Dent, Joseph Alan; Schöck, Frieder (Winter)
-
CHEM 110 General Chemistry 1 (4 credits)
Overview
Chemistry : A study of the fundamental principles of atomic structure, radiation and nuclear chemistry, valence theory, coordination chemistry, and the periodic table.
Terms: Fall 2011
Instructors: Gauthier, Jean-Marc; Kakkar, Ashok K; Sanctuary, Bryan Clifford; Fenster, Ariel (Fall)
Fall
Prerequisites/corequisites: College level mathematics and physics or permission of instructor; CHEM 120 is not a prerequisite
Each lab section is limited enrolment
-
CHEM 120 General Chemistry 2 (4 credits)
Overview
Chemistry : A study of the fundamental principles of physical chemistry.
Terms: Winter 2012
Instructors: Fenster, Ariel; Butler, Ian Sydney; Siwick, Bradley; Gauthier, Jean-Marc (Winter)
Winter
Prerequisites/corequisites: College level mathematics and physics, or permission of instructor: CHEM 110 is not a prerequisite
Each lab section is limited enrolment
-
MATH 139 Calculus 1 with Precalculus (4 credits) *
Overview
Mathematics & Statistics (Sci) : Review of trigonometry and other Precalculus topics. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2011
Instructors: Hundemer, Axel W (Fall)
Fall
4 hours lecture, 1 hour tutorial
Prerequisite: a course in functions
Restriction: Not open to students who have taken CEGEP objective 00UN or equivalent.
Restriction Note B: Not open to students who have taken or are taking MATH 122, except by permission of the Department of Mathematics and Statistics.
Students continue in MATH 141
Each Tutorial section is enrolment limited
-
MATH 140 Calculus 1 (3 credits) *
Overview
Mathematics & Statistics (Sci) : Review of functions and graphs. Limits, continuity, derivative. Differentiation of elementary functions. Antidifferentiation. Applications.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Drury, Stephen W; Shirokoff, David; Fels, Mark Eric (Fall) Jonsson, Wilbur (Winter) Canzani Garcia, Yaiza (Summer)
3 hours lecture, 1 hour tutorial
Prerequisite: High School Calculus
Restriction: Not open to students who have taken MATH 120, MATH 139 or CEGEP objective 00UN or equivalent
Restriction: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics
Each Tutorial section is enrolment limited
-
MATH 141 Calculus 2 (4 credits)
Overview
Mathematics & Statistics (Sci) : The definite integral. Techniques of integration. Applications. Introduction to sequences and series.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Kang, Sungmo (Fall) Lei, Antonio; Drury, Stephen W; El Hajj, Layan (Winter) Bigdely, Hadi; Grech, Philip (Summer)
Restriction: Not open to students who have taken MATH 121 or CEGEP objective 00UP or equivalent
Restriction Note B: Not open to students who have taken or are taking MATH 122 or MATH 130 or MATH 131, except by permission of the Department of Mathematics and Statistics.
Each Tutorial section is enrolment limited
-
PHYS 101 Introductory Physics - Mechanics (4 credits)
Overview
Physics : An introductory course in physics without calculus, covering mechanics (kinematics, dynamics, energy, and rotational motion), oscillations and waves, sound, light, and geometrical optics.
Terms: Fall 2011
Instructors: Ragan, Kenneth J (Fall)
Fall
3 hours lectures; 2 hours laboratory; tutorial sessions
Restriction: Not open to students taking or having taken PHYS 131, CEGEP objective 00UR or equivalent
Laboratory sections have limited enrolment
-
PHYS 102 Introductory Physics - Electromagnetism (4 credits)
Overview
Physics : Electric field and potential. D.C. circuits and measurements. Capacitance. Magnetic field and induction. A.C. circuits Semiconductor devices and their application. Electromagnetic waves.
Terms: Winter 2012
Instructors: Altounian, Zaven (Winter)
Core Required Courses (20 credits)
* Note: If CHEM 212 is taken prior to the start of the program, credits must be replaced with an alternative 3- or 4-credit course in the program, with approval from the Program Adviser.
-
BIOL 200 Molecular Biology (3 credits)
Overview
Biology (Sci) : The physical and chemical properties of the cell and its components in relation to their structure and function. Topics include: protein structure, enzymes and enzyme kinetics; nucleic acid replication, transcription and translation; the genetic code, mutation, recombination, and regulation of gene expression.
Terms: Fall 2011
Instructors: Bureau, Thomas E; Roy, Richard D W; Fagotto, Francesco; Zetka, Monique (Fall)
-
CHEM 212 Introductory Organic Chemistry 1 (4 credits) *
Overview
Chemistry : A survey of reactions of aliphatic and aromatic compounds including modern concepts of bonding, mechanisms, conformational analysis, and stereochemistry.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Daoust, Michel; Sewall, Samuel Lewis; Gauthier, Jean-Marc; Tsantrizos, Youla S (Fall) Harpp, David Noble; Schirrmacher, Ralf; Daoust, Michel; Sewall, Samuel Lewis; Gauthier, Jean-Marc (Winter) Fenster, Ariel; Daoust, Michel (Summer)
Fall, Winter, Summer
Prerequisite: CHEM 110 or equivalent.
Corequisite: CHEM 120 or equivalent.
Restriction: Not open to students who are taking or have taken CHEM 211 or equivalent
Each lab section is limited enrolment
Note: Some CEGEP programs provide equivalency for this course. For more information, please see the Department of Chemistry's Web page ().
-
NSCI 200 Introduction to Neuroscience 1 (3 credits)
Overview
Neuroscience : An introduction to how nerve cells generate action potentials, communicate with one another at synapses, develop synaptic connections, early brain development, and the construction of specific neural circuits.
Terms: Fall 2011
Instructors: Ruthazer, Edward; Murai, Keith; Stellwagen, David (Fall)
-
NSCI 201 Introduction to Neuroscience 2 (3 credits)
Overview
Neuroscience : An introduction to how the nervous system acquires and integrates information and uses it to produce behaviour.
Terms: Winter 2012
Instructors: Balaban, Evan (Winter)
-
NSCI 300 Neuroethics (3 credits)
Overview
Neuroscience : An introduction to ethical issues arising from basic and clinical neuroscience. Overview of therapeutic, diagnostic, and research interventions in mental and neurological disorders, and their implications on society.
Terms: Winter 2012
Instructors: Durante, Christopher; Ernst, Carl; Glass, Leon (Winter)
-
NSCI 400D1 Neuroscience Seminar (0.5 credits)
Overview
Neuroscience : Analysis of current research in neuroscience.
Terms: Fall 2011
Instructors: Vollrath, Melissa (Fall)
Fall/Winter
Students will demonstrate their understanding of neuroscience by writing critical analyses of selected published papers and research seminars.
Prerequisite: NSCI 200, 201, and 300
Restriction: Open to students in their final year of a B.Sc. Major Neuroscience Program
-
NSCI 400D2 Neuroscience Seminar (0.5 credits)
Overview
Neuroscience : Analysis of current research in neuroscience.
Terms: Winter 2012
Instructors: Vollrath, Melissa (Winter)
Fall/Winter
Students will demonstate their understanding of neuroscience by writing critical analyses of selected published papers and research seminars.
Prerequisite: NSCI 200, 201, 300 and 400D1
Restriction: Open to students in their final year of a B.Sc. Major Neuroscience Program
No credit will be given for this course unless both NSCI 400D1 and NSCI 400D2 are successfully completed in consecutive terms
-
PSYC 311 Human Cognition and the Brain (3 credits)
Overview
Psychology : The course is an introduction to the field studying how human cognitive processes, such as perception, attention, language, learning and memory, planning and organization, are related to brain processes. The material covered is primarily based on studies of the effects of different brain lesions on cognition and studies of brain activity in relation to cognitive processes with modern functional neuroimaging methods.
Terms: Fall 2011, Summer 2012
Instructors: Petrides, Michalakis (Fall) Petrides, Michalakis (Summer)
Fall
2 lectures; 1 conference
Complementary Courses (45 credits)
9 core credits selected as follows:
3 credits from:
-
BIOL 373 Biometry (3 credits)
Overview
Biology (Sci) : Elementary statistical methods in biology. Introduction to the analysis of biological data with emphasis on the assumptions behind statistical tests and models. Use of statistical techniques typically available on computer packages.
Terms: Fall 2011
Instructors: Leung, Brian (Fall)
Fall
2 hours lecture and 2 hours laboratory
Prerequisite: MATH 112 or equivalent
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
-
PSYC 305 Statistics for Experimental Design (3 credits)
Overview
Psychology : An introduction to the design and analysis of experiments, including analysis of variance, planned and post hoc tests and a comparison of anova to correlational analysis.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Amsel, Rhonda N (Fall) Hwang, Heungsun (Winter) Amsel, Rhonda N (Summer)
Fall and Winter
Prerequisite: PSYC 204 or equivalent
This course is required of all students who propose to enter an Honours or Major program in Psychology
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
3 credits completed by taking the course below or an equivalent in Computer Science.
-
COMP 202 Foundations of Programming (3 credits)
Overview
Computer Science (Sci) : Introduction to programming in a modern high-level language, modular software design and debugging. Programming concepts are illustrated using a variety of application areas.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Pomerantz, Daniel; Kienzle, Jorg Andreas (Fall) Pomerantz, Daniel; Liu, Xue (Winter) Pomerantz, Daniel (Summer)
3 hours
Prerequisite: a CEGEP level mathematics course
Restrictions: COMP 202 and COMP 208 cannot both be taken for credit. COMP 202 is intended as a general introductory course, while COMP 208 is intended for students interested in scientific computation. COMP 202 cannot be taken for credit with or after COMP 250
3 credits from:
-
BIOL 309 Mathematical Models in Biology (3 credits)
Overview
Biology (Sci) : Application of finite difference and differential equations to problems in cell and developmental biology, ecology and physiology. Qualitative, quantitative and graphical techniques are used to analyze mathematical models and to compare theoretical predictions with experimental data.
Terms: Fall 2011
Instructors: Glass, Leon (Fall)
Fall
3 hours lecture
Prerequisite: one year of calculus. An additional course in calculus is recommended
-
MATH 222 Calculus 3 (3 credits) **
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Loveys, James G; Rogers, Mathew (Fall) Loveys, James G (Winter) Fraiman, Nicolás (Summer)
** Note: Students who have successfully completed an equivalent to MATH 222 at CEGEP or elsewhere, may substitute another 3-credit course for MATH 222.
Streams
15 credits selected from one of the following streams:
A. Cell and Molecular Stream
15 credits selected as follows:
* Students take either BIOL 201 OR BIOC 212, but not both.
-
BIOC 212 Molecular Mechanisms of Cell Function (3 credits) *
Overview
Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.
Terms: Winter 2012
Instructors: Pause, Arnim; Bouchard, Maxime; Young, Jason (Winter)
-
BIOC 311 Metabolic Biochemistry (3 credits)
Overview
Biochemistry : The generation of metabolic energy in higher organisms with an emphasis on its regulation at the molecular, cellular and organ level. Chemical concepts and mechanisms of enzymatic catalysis are also emphasized. Included: selected topics in carbohydrate, lipid and nitrogen metabolism; complex lipids and biological membranes; hormonal signal transduction.
Terms: Fall 2011
Instructors: St-Pierre, Julie; Dostie, Josee; Nagar, Bhushan (Fall)
-
BIOL 201 Cell Biology and Metabolism (3 credits) *
Overview
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2012
Instructors: Brouhard, Gary; Roy, Richard D W; Western, Tamara (Winter)
-
BIOL 202 Basic Genetics (3 credits)
Overview
Biology (Sci) : Introduction to basic principles, and to modern advances, problems and applications in the genetics of higher and lower organisms with examples representative of the biological sciences.
Terms: Winter 2012, Summer 2012
Instructors: Western, Tamara; Chevrette, Mario; Hendry, Andrew (Winter) Dankort, David; Hipfner, David (Summer)
-
MIMM 314 Immunology (3 credits)
Overview
Microbiology and Immun (Sci) : An introduction to the immune system, antigens, antibodies and lymphocytes. The course will cover the cellular and molecular basis of lymphocyte development and mechanisms of lymphocyte activation in immune responses.
Terms: Winter 2012
Instructors: Piccirillo, Ciriaco; Alizadehfar, Reza; Fournier, Sylvie (Winter)
-
PHGY 311 Channels, Synapses & Hormones (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.
Terms: Fall 2011
Instructors: Cooper, Ellis; Farookhi, Riaz; Haghighi, Ali (Fall)
Fall
3 hours of lectures per week; 1-3 hours optional lab/demonstration/tutorial arranged for a maximum of 3 afternoons per term
Prerequisite: PHGY 209 or permission of the instructor.
B. Neurophysiology/Neural Computation Stream
15 credits selected as follows:
9 credits from:
* Students take either BIOL 201 OR BIOC 212, but not both.
-
ANAT 321 Circuitry of the Human Brain (3 credits)
Overview
Anatomy & Cell Biology : This course explores the functional organization of the human brain and spinal cord. The course focuses on how neuronal systems are designed to subserve specific motor, sensory, and cognitive operations.
Terms: Fall 2011
Instructors: Brawer, James; David, Samuel (Fall)
-
BIOC 212 Molecular Mechanisms of Cell Function (3 credits) *
Overview
Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.
Terms: Winter 2012
Instructors: Pause, Arnim; Bouchard, Maxime; Young, Jason (Winter)
-
BIOL 201 Cell Biology and Metabolism (3 credits) *
Overview
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2012
Instructors: Brouhard, Gary; Roy, Richard D W; Western, Tamara (Winter)
-
PHGY 311 Channels, Synapses & Hormones (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.
Terms: Fall 2011
Instructors: Cooper, Ellis; Farookhi, Riaz; Haghighi, Ali (Fall)
Fall
3 hours of lectures per week; 1-3 hours optional lab/demonstration/tutorial arranged for a maximum of 3 afternoons per term
Prerequisite: PHGY 209 or permission of the instructor.
3 credits from:
-
BIOL 306 Neural Basis of Behaviour (3 credits)
Overview
Biology (Sci) : Neural mechanisms of animal behaviour; neuroethology; cellular neurophysiology, integrative networks within nervous systems; neural control of movement; processing of sensory information.
Terms: Fall 2011
Instructors: Pollack, Gerald; Dent, Joseph Alan; Krahe, Rudiger (Fall)
-
PHGY 314 Integrative Neuroscience (3 credits)
Overview
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2011
Instructors: Cullen, Kathleen E; Martinez Trujillo, Julio; Pack, Christopher (Fall)
Fall
3 hours of lectures per week
Prerequisites: PHGY 209
3 credits from:
-
BIOL 309 Mathematical Models in Biology (3 credits)
Overview
Biology (Sci) : Application of finite difference and differential equations to problems in cell and developmental biology, ecology and physiology. Qualitative, quantitative and graphical techniques are used to analyze mathematical models and to compare theoretical predictions with experimental data.
Terms: Fall 2011
Instructors: Glass, Leon (Fall)
Fall
3 hours lecture
Prerequisite: one year of calculus. An additional course in calculus is recommended
-
COMP 206 Introduction to Software Systems (3 credits)
Overview
Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.
Terms: Fall 2011, Winter 2012
Instructors: Vybihal, Joseph P (Fall) Vybihal, Joseph P; Dudek, Gregory L; He, Wenbo (Winter)
-
MATH 222 Calculus 3 (3 credits) **
Overview
Mathematics & Statistics (Sci) : Taylor series, Taylor's theorem in one and several variables. Review of vector geometry. Partial differentiation, directional derivative. Extreme of functions of 2 or 3 variables. Parametric curves and arc length. Polar and spherical coordinates. Multiple integrals.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Loveys, James G; Rogers, Mathew (Fall) Loveys, James G (Winter) Fraiman, Nicolás (Summer)
** Note: Students who have successfully completed an equivalent to MATH 222 at CEGEP or elsewhere, may substitute another 3-credit course for MATH 222.
C. Cognitive/Behavioural Stream
15 credits selected as follows:
12 credits as follows:
* Students take either BIOL 306 OR PHGY 314, but not both.
-
ANAT 321 Circuitry of the Human Brain (3 credits)
Overview
Anatomy & Cell Biology : This course explores the functional organization of the human brain and spinal cord. The course focuses on how neuronal systems are designed to subserve specific motor, sensory, and cognitive operations.
Terms: Fall 2011
Instructors: Brawer, James; David, Samuel (Fall)
-
BIOL 306 Neural Basis of Behaviour (3 credits) *
Overview
Biology (Sci) : Neural mechanisms of animal behaviour; neuroethology; cellular neurophysiology, integrative networks within nervous systems; neural control of movement; processing of sensory information.
Terms: Fall 2011
Instructors: Pollack, Gerald; Dent, Joseph Alan; Krahe, Rudiger (Fall)
-
PHGY 314 Integrative Neuroscience (3 credits) *
Overview
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2011
Instructors: Cullen, Kathleen E; Martinez Trujillo, Julio; Pack, Christopher (Fall)
Fall
3 hours of lectures per week
Prerequisites: PHGY 209
-
PSYC 213 Cognition (3 credits)
Overview
Psychology : Where do thoughts come from? What is the nature of thought, and how does it arise in the mind and the brain? Cognition is the study of human information processing, and we will explore topics such as memory, attention, categorization, decision making, intelligence, philosophy of mind, and the mind-as computer metaphor.
Terms: Winter 2012
Instructors: Ristic, Jelena (Winter)
Winter
2 lectures, 1 conference
Prerequisite: One previous course in Psychology.
-
PSYC 318 Behavioural Neuroscience 2 (3 credits)
Overview
Psychology : The physiological bases of motivational states, with respect to feeding, drinking, sexual behavior, drug use, and aggression. Physiological bases of learning and memory.
Terms: Winter 2012
Instructors: Mikliaeva, Elena; Sossin, Wayne Steven (Winter)
and 3 credits from:
-
LING 390 Neuroscience of Language (3 credits)
Overview
Linguistics : The neurobiological study of the human language faculty. Theoretical and experimental approaches to neurolinguistics, focusing on linguistic capacity in the healthy and damaged brain.
Terms: Fall 2011
Instructors: Grodzinsky, Yosef (Fall)
Fall
Prerequisite: An introductory course in Linguistics, Psychology or Neuroscience at the 200 level or above.
- PSYC 317 Genes and Behaviour (3 credits)
- PSYC 342 Hormones and Behaviour (3 credits)
Other Complementary Courses
(21-23 credits)
3-16 credits from:
-
BIOL 301 Cell and Molecular Laboratory (4 credits)
Overview
Biology (Sci) : An introduction to laboratory techniques with a focus on methods used to investigate fundamental questions in modern cell and molecular biology. Techniques including gene cloning, DNA and protein isolation and manipulation are covered, along with functional analysis of genes and proteins, basic bioinformatics, and computer-based experimental design and data analysis.
Terms: Fall 2011, Winter 2012
Instructors: Moon, Nam Sung; Dent, Joseph Alan; Zheng, Huanquan (Fall) Moon, Nam Sung; Harrison, Paul; Zheng, Huanquan (Winter)
Fall or Winter
1 hour lecture and one 6-hour laboratory
Prerequisites: PHYS 102 or PHYS 142, BIOL 200, BIOL 201 or ANAT/BIOC 212, and BIOL 202. BIOL 206 recommended.
Restrictions: Not open to students who have taken or are taking BIOC 300. Requires departmental approval.
For approval email anne-marie.sdicu [at] mcgill.ca. Specify your ID number as well as the term and lab day.
-
BIOL 389 Laboratory in Neurobiology (3 credits)
Overview
Biology (Sci) : Methods of neurobiological research, including extracellular and intracellular recordings, electrical stimulation, and the study of neuro-behavioural problems.
Terms: Winter 2012
Instructors: Krahe, Rudiger; Dent, Joseph Alan; Pollack, Gerald (Winter)
-
NSCI 410 Independent Research 1 (6 credits)
Overview
Neuroscience : Independent laboratory research in neuroscience.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Pollack, Gerald; Cooper, Linda H; Krahe, Rudiger (Fall) Krahe, Rudiger; Pollack, Gerald; Cooper, Linda H (Winter) Pollack, Gerald; Cooper, Linda H (Summer)
Prerequisites: NSCI 200 and 201
Restrictions: Only open to students registered in the B.Sc. Neuroscience Major. Not open to students who have taken or are taking NSCI 420D1 & D2.
-
NSCI 420D1 Independent Research 2 (4.5 credits)
Overview
Neuroscience : Independent laboratory research in neuroscience.
Terms: Fall 2011, Summer 2012
Instructors: Pollack, Gerald; Cooper, Linda H; Krahe, Rudiger (Fall) Pollack, Gerald; Krahe, Rudiger (Summer)
Restrictions: Only open to students registered in the B.Sc. Neuroscience Major. Not open to students who have taken or are taking NSCI 410.
Students must register for both NSCI 420D1 and NSCI 420D2.
No credit will be given for this course unless both NSCI 420D1 and NSCI 420D2 are successfully completed in consecutive terms.
-
NSCI 420D2 Independent Research 2 (4.5 credits)
Overview
Neuroscience : Independent laboratory research in neuroscience.
Terms: Fall 2011, Winter 2012
Instructors: Pollack, Gerald; Cooper, Linda H (Fall) Krahe, Rudiger; Pollack, Gerald; Cooper, Linda H (Winter)
Prerequisite: NSCI 420D1
Restrictions: Only open to students registered in the B.Sc. Neuroscience Major. Not open to students who have taken or are taking NSCI 410.
No credit will be given for this course unless both NSCI 420D1 and NSCI 420D2 are successfully completed in consecutive terms
The remainder of the credits should be taken from the following lists. At least 15 of the 21-23 credits must be at the 400 or 500 level, which could include the above NSCI 410 or NSCI 420D1/D2 research courses:
200- and 300-level courses:
* Students take either BIOL 201 OR BIOC 212, but not both.
** COMP 206 or equivalent 300- or 400-level Computer Science course.
-
BIOC 212 Molecular Mechanisms of Cell Function (3 credits) *
Overview
Biochemistry : An introductory course describing the biochemistry and molecular biology of selected key functions of animal cells, including: gene expression; mitochondrial production of metabolic energy; cellular communication with the extra-cellular environment; and regulation of cell division.
Terms: Winter 2012
Instructors: Pause, Arnim; Bouchard, Maxime; Young, Jason (Winter)
-
BIOC 311 Metabolic Biochemistry (3 credits)
Overview
Biochemistry : The generation of metabolic energy in higher organisms with an emphasis on its regulation at the molecular, cellular and organ level. Chemical concepts and mechanisms of enzymatic catalysis are also emphasized. Included: selected topics in carbohydrate, lipid and nitrogen metabolism; complex lipids and biological membranes; hormonal signal transduction.
Terms: Fall 2011
Instructors: St-Pierre, Julie; Dostie, Josee; Nagar, Bhushan (Fall)
-
BIOL 201 Cell Biology and Metabolism (3 credits) *
Overview
Biology (Sci) : This course introduces the student to our modern understanding of cells and how they work. Major topics to be covered include: photosynthesis, energy metabolism and metabolic integration; plasma membrane including secretion, endocytosis and contact mediated interactions between cells; cytoskeleton including cell and organelle movement; the nervous system; hormone signaling; the cell cycle.
Terms: Winter 2012
Instructors: Brouhard, Gary; Roy, Richard D W; Western, Tamara (Winter)
-
BIOL 300 Molecular Biology of the Gene (3 credits)
Overview
Biology (Sci) : A survey of current knowledge and approaches in the area of regulation of gene expression, post-transcriptional control of gene expression, and signal transduction.
Terms: Fall 2011
Instructors: Schöck, Frieder; Nilson, Laura; Rocheleau, Christian (Fall)
-
BIOL 306 Neural Basis of Behaviour (3 credits)
Overview
Biology (Sci) : Neural mechanisms of animal behaviour; neuroethology; cellular neurophysiology, integrative networks within nervous systems; neural control of movement; processing of sensory information.
Terms: Fall 2011
Instructors: Pollack, Gerald; Dent, Joseph Alan; Krahe, Rudiger (Fall)
-
CHEM 222 Introductory Organic Chemistry 2 (4 credits)
Overview
Chemistry : Modern spectroscopic techniques for structure determination. The chemistry of alcohols, ethers, carbonyl compounds, and amines, with special attention to mechanistic aspects. Special topics.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Daoust, Michel; Sewall, Samuel Lewis; Gauthier, Jean-Marc; Harpp, David Noble; Perepichka, Dmytro (Fall) Daoust, Michel; Sewall, Samuel Lewis; Gauthier, Jean-Marc; Auclair, Karine (Winter) Daoust, Michel; Schwarcz, Joseph A (Summer)
-
COMP 206 Introduction to Software Systems (3 credits) **
Overview
Computer Science (Sci) : Comprehensive overview of programming in C, use of system calls and libraries, debugging and testing of code; use of developmental tools like make, version control systems.
Terms: Fall 2011, Winter 2012
Instructors: Vybihal, Joseph P (Fall) Vybihal, Joseph P; Dudek, Gregory L; He, Wenbo (Winter)
-
LING 390 Neuroscience of Language (3 credits)
Overview
Linguistics : The neurobiological study of the human language faculty. Theoretical and experimental approaches to neurolinguistics, focusing on linguistic capacity in the healthy and damaged brain.
Terms: Fall 2011
Instructors: Grodzinsky, Yosef (Fall)
Fall
Prerequisite: An introductory course in Linguistics, Psychology or Neuroscience at the 200 level or above.
-
MATH 315 Ordinary Differential Equations (3 credits)
Overview
Mathematics & Statistics (Sci) : First order ordinary differential equations including elementary numerical methods. Linear differential equations. Laplace transforms. Series solutions.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Xu, Jian-Jun (Fall) Xu, Jian-Jun (Winter) Eswarathasan, Suresh (Summer)
-
MATH 323 Probability (3 credits)
Overview
Mathematics & Statistics (Sci) : Sample space, events, conditional probability, independence of events, Bayes' Theorem. Basic combinatorial probability, random variables, discrete and continuous univariate and multivariate distributions. Independence of random variables. Inequalities, weak law of large numbers, central limit theorem.
Terms: Fall 2011, Winter 2012, Summer 2012
Instructors: Anderson, William J (Fall) Wolfson, David B (Winter) Kelome, Djivede (Summer)
-
MATH 324 Statistics (3 credits)
Overview
Mathematics & Statistics (Sci) : Sampling distributions, point and interval estimation, hypothesis testing, analysis of variance, contingency tables, nonparametric inference, regression, Bayesian inference.
Terms: Fall 2011, Winter 2012
Instructors: Steele, Russell (Fall) Anderson, William J (Winter)
Fall and Winter
Prerequisite: MATH 323 or equivalent
Restriction: Not open to students who have taken or are taking MATH 357
You may not be able to receive credit for this course and other statistic courses. Be sure to check the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar.
-
MIMM 314 Immunology (3 credits)
Overview
Microbiology and Immun (Sci) : An introduction to the immune system, antigens, antibodies and lymphocytes. The course will cover the cellular and molecular basis of lymphocyte development and mechanisms of lymphocyte activation in immune responses.
Terms: Winter 2012
Instructors: Piccirillo, Ciriaco; Alizadehfar, Reza; Fournier, Sylvie (Winter)
-
NEUR 310 Cellular Neurobiology (3 credits)
Overview
Neurology and Neurosurgery : A survey of the functional organization of nerve cells, signalling in the nervous system, and principles of neural development. Topics include cell polarity, neurotransmitters, neurotrophins, receptors and second messengers, cell lineage, guidance of axon outgrowth, and nerve regeneration. Emphasis will be placed on analysis of neurons at the molecular level.
Terms: Winter 2012
Instructors: Cloutier, Jean-Francois; Ragsdale, David S; Kennedy, Timothy E (Winter)
-
PHGY 311 Channels, Synapses & Hormones (3 credits)
Overview
Physiology : In-depth presentation of experimental results and hypotheses on cellular communication in the nervous system and the endocrine system.
Terms: Fall 2011
Instructors: Cooper, Ellis; Farookhi, Riaz; Haghighi, Ali (Fall)
Fall
3 hours of lectures per week; 1-3 hours optional lab/demonstration/tutorial arranged for a maximum of 3 afternoons per term
Prerequisite: PHGY 209 or permission of the instructor.
-
PHGY 314 Integrative Neuroscience (3 credits)
Overview
Physiology : In depth presentation of experimental results and hypotheses underlying our current understanding of how single neurons and ensembles of neurons encode sensory information, generate movement, and control cognitive functions such as emotion, learning, and memory, during voluntary behaviours.
Terms: Fall 2011
Instructors: Cullen, Kathleen E; Martinez Trujillo, Julio; Pack, Christopher (Fall)
Fall
3 hours of lectures per week
Prerequisites: PHGY 209
-
PSYC 315 Computational Psychology (3 credits)
Overview
Psychology : Application of computational methods to the simulation of psychological phenomena. Comparison of natural and artificial intelligence. Symbolic and neural network techniques. Methods for evaluating simulations.
Terms: Fall 2011
Instructors: Shultz, Thomas R (Fall)
Fall
Prerequisite: Permission of instructor.
Restriction: Not open to U0 or U1 students.
- PSYC 317 Genes and Behaviour (3 credits)
-
PSYC 318 Behavioural Neuroscience 2 (3 credits)
Overview
Psychology : The physiological bases of motivational states, with respect to feeding, drinking, sexual behavior, drug use, and aggression. Physiological bases of learning and memory.
Terms: Winter 2012
Instructors: Mikliaeva, Elena; Sossin, Wayne Steven (Winter)
- PSYC 342 Hormones and Behaviour (3 credits)
400- and 500-level courses:
-
BIOL 514 Neurobiology Learning and Memory (3 credits)
Overview
Biology (Sci) : Properties of nerve cells that are responsible for learning and memory. Recent advances in the understanding of neurophysiological, biochemical and structural processes relevant to neural plasticity. Emphasis on a few selected model systems involving both vertebrate and invertebrate animals.
Terms: Winter 2012
Instructors: Nader, Karim (Winter)
- BIOL 530 Advances in Neuroethology (3 credits)
-
BIOL 532 Developmental Neurobiology Seminar (3 credits)
Overview
Biology (Sci) : Discussions of all aspects of nervous system development including pattern formation, cell lineage, pathfinding and targeting by growing axons, and neural regeneration. The basis for these discussions will be recent research papers and other assigned readings.
Terms: Winter 2012
Instructors: Van Meyel, Donald; Kania, Artur; Fournier, Alyson Elise (Winter)
-
BIOL 588 Advances in Molecular/Cellular Neurobiology (3 credits)
Overview
Biology (Sci) : Discussion of fundamental molecular mechanisms underlying the general features of cellular neurobiology. An advanced course based on lectures and on a critical review of primary research papers.
Terms: This course is not scheduled for the 2011-2012 academic year.
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
BMDE 519 Biomedical Signals and Systems (3 credits)
Overview
Biomedical Engineering : An introduction to the theoretical framework, experimental techniques and analysis procedures available for the quantitative analysis of physiological systems and signals. Lectures plus laboratory work using the Biomedical Engineering computer system. Topics include: amplitude and frequency structure of signals, filtering, sampling, correlation functions, time and frequency-domain descriptions of systems.
Terms: Fall 2011
Instructors: Kearney, Robert E (Fall)
(3-0-6)
Prerequisites: Satisfactory standing in U3 Honours Physiology; or U3 Major in Physics-Physiology; or U3 Major Physiology-Mathematics; or permission of instructor
-
MATH 437 Mathematical Methods in Biology (3 credits) *
Overview
Mathematics & Statistics (Sci) : The formulation and treatment of realistic mathematical models describing biological phenomena through qualitative and quantitative mathematical techniques (e.g. local and global stability theory, bifurcation analysis and phase plane analysis) and numerical simulation. Concrete and detailed examples will be drawn from molecular and cellular biology and mammalian physiology.
Terms: This course is not scheduled for the 2011-2012 academic year.
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
MIMM 414 Advanced Immunology (3 credits)
Overview
Microbiology and Immun (Sci) : An advanced course serving as a logical extension of MIMM 314. The course will integrate molecular, cellular and biochemical events involved in the ontogeny of the lymphoid system and its activation in the immune response. The course will provide the student with an up-to-date understanding of a rapidly moving field.
Terms: Fall 2011
Instructors: Fournier, Sylvie; Olivier, Martin; Arbour, Nathalie (Fall)
Fall
3 hour lecture
Prerequisite: MIMM 314
-
MIMM 509 Inflammatory Processes (3 credits)
Overview
Microbiology and Immun (Sci) : This course concentrates on the non-specific aspects of the immune response, an area which is not adequately covered by the other immunology courses presented at the university. Interactions between guest researchers (from º£½ÇÉçÇø and other universities) and students will be furthered.
Terms: Winter 2012
Instructors: Rauch, Joyce Ellen; Di Battista, Giovanni; Bar-Or, Amit (Winter)
-
NEUR 550 Free Radical Biomedicine (3 credits)
Overview
Neurology and Neurosurgery : An interdisciplinary course on the biochemistry and cellular/molecular biology of free radicals, transition metals, oxidative stress and antioxidants and their roles in health and disease.
Terms: Winter 2012
Instructors: Pantopoulos, Konstantinos; Schipper, Hyman M (Winter)
-
PHGY 425 Analyzing Physiological Systems (3 credits)
Overview
Physiology : An introduction to quantitative analysis of physiological data, both to the mode of thinking and to a set of tools that allows accurate predictions of biological systems. Examples will range from oscillating genetic networks to understanding higher brain function. Modelling and data analysis through examples and exercises will be emphasized.
Terms: Fall 2011
Instructors: Cook, Erik; Glavinovic, Mladen I; Chacron, Maurice (Fall)
-
PHGY 451 Advanced Neurophysiology (3 credits)
Overview
Physiology : Topics of current interest in neurophysiology including the development of neurons and synapses, physiology of ionic channels, presynaptic and postsynaptic events in synaptic transmission and neuronal interactions in CNS function.
Terms: Fall 2011
Instructors: Cooper, Ellis; Cohen, Monroe W; Bourque, Charles W (Fall)
Fall
3 hours lecture
Prerequisite: PHGY 311 or equivalent
Restriction: Departmental approval required
-
PHGY 513 Cellular Immunology (3 credits)
Overview
Physiology : This course deals with cellular interactions, regulation and effector mechanisms of the normal immune response in relation to diseases and pathogenic processes. It is taught at an advanced level.
Terms: Winter 2012
Instructors: Jones, Russell; Saleh, Maya; Behr, Marcel A (Winter)
Winter
3 hours lectures plus term paper
Prerequisite: MIMM 314, or permission of the instructor
-
PHGY 520 Ion Channels (3 credits)
Overview
Physiology : A discussion of the principal theories and interesting new developments in the study of ion channels. Based on a textbook, computer exercises and critical reading and presentation of research papers. Topics include: Properties of voltage-and ligand-gated channels, single channel analysis, structure and function of ion channels.
Terms: This course is not scheduled for the 2011-2012 academic year.
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
- Winter
- Offered in even numbered years
- 1 1/2 hour lecture, 1 1/2 hour seminar
- Prerequisite: PHGY 311
- Priority to Graduate and Honours students; others by permission of instructors.
-
PHGY 556 Topics in Systems Neuroscience (3 credits)
Overview
Physiology : Topics of current interest in systems neurophysiology and behavioural neuroscience including: the neural representation of sensory information and motor behaviours, models of sensory motor integration, and the computational analysis of problems in motor control and perception. Students will be expected to present and critically discuss journal articles in class.
Terms: Winter 2012
Instructors: Cullen, Kathleen E; Guitton, Daniel E; Cook, Erik (Winter)
Winter
Restriction: Permission of the instructor required.
Restriction: Not open to students who have taken PHGY 456
-
PHYS 413 Physical Basis of Physiology (3 credits) *
Overview
Physics : Analytic and computer simulation techniques are used to examine the role of nonlinearities and time delays in determining the dynamic behaviour of physiological control systems and their relation to normal and pathophysiological states. Examples drawn from the control of respiration, cellular proliferation and differentiation, biochemical feedback networks, thermoregulatory mechanisms, and neural feedback.
Terms: Fall 2011
Instructors: Mackey, Michael C (Fall)
-
PSYC 410 Special Topics in Neuropsychology (3 credits)
Overview
Psychology : Developments in cognitive neuroscience and cognitive neuropsychiatry via readings from primary sources. Topics include the neural bases of memory, emotion, social cognition and neuropsychiatric diseases. Integrating knowledge from studies in clinical populations and functional neuroimaging studies.
Terms: Fall 2011
Instructors: Raz, Amir (Fall)
-
PSYC 427 Sensorimotor Behaviour (3 credits)
Overview
Psychology : A systematic examination of the sensorimotor system, drawing on models and data from both behavioural and physiological studies. Topics include: cortical motor areas, cerebellum, basal ganglia, spinal mechanisms, motor unit properties and force production, prioception, muscle properties.
Terms: Winter 2012
Instructors: Ostry, David J (Winter)
Winter
2 lectures
Prerequisite: PSYC 308 or permission of instructor
-
PSYC 470 Memory and Brain (3 credits)
Overview
Psychology : Memory systems are studied with an emphasis on the neural computations that occur at various stages of the processing stream, focusing on the hippocampus, amygdala, basal ganglia, cerebellum and cortex. The data reviewed is obtained from human, non-human primates and rodents, with single unit recording, neuroimaging and brain damaged subjects.
Terms: Winter 2012
Instructors: Bohbot, Veronique; Rajah, Maria (Winter)
-
PSYC 501 Auditory Perception (3 credits)
Overview
Psychology : Auditory perception and its neural correlates, covering acoustics, auditory anatomy and neurobiology, and the neural correlates of perception of loudness, pitch, spatial location, frequency specificity, musical, speech sounds, and segregation of component sounds in multi-sound environments in both humans and animals.
Terms: Fall 2011
Instructors: Balaban, Evan (Fall)
Fall
2 lectures
Prerequisite: Undergraduate courses in perception or sound or neuroscience and permission of instructor.
Restrictions: For U3 and graduate students.
-
PSYC 502 Psychoneuroendocrinology (3 credits)
Overview
Psychology : Neuroendocrinological mechanisms of action that underlie specific behaviors and their disorders. Hormones and cognitive functioning, sexual functioning, aggression, mood and stress in humans and will focus on methods of hypothesis-testing in these areas.
Terms: This course is not scheduled for the 2011-2012 academic year.
Instructors: There are no professors associated with this course for the 2011-2012 academic year.
-
PSYC 522 Neurochemistry and Behaviour (3 credits)
Overview
Psychology : Anatomical, biochemical and physiological aspects of neurotransmitter systems in the brain, current theories of the function of these systems in normal and abnormal behaviour, and the actions of psychotropic drugs.
Terms: Winter 2012
Instructors: Pompeiano, Maria (Winter)
-
PSYC 526 Advances in Visual Perception (3 credits)
Overview
Psychology : We examine in detail the structure of the visual system, and its function as reflected in the perceptual abilities and behaviour of the organism. Parallels are also drawn with other sensory systems to demonstrate general principles of sensory coding.
Terms: Fall 2011
Instructors: Kingdom, Frederick A A; Mullen, Kathleen T (Fall)
Fall
2 lectures
-
PSYC 532 Cognitive Science (3 credits)
Overview
Psychology : The multi-disciplinary study of intelligent systems. Problems in vision, memory, categorization, choice, problem solving, cognitive development, syntax, language acquisition, and rationality. Rule-based and connectionist approaches.
Terms: Fall 2011, Winter 2012
Instructors: Shultz, Thomas R (Fall) Harnad, Stevan (Winter)
Fall
Prerequisites: Admission to the Cognitive Science Minor or permission of instructor. Students should ideally have some cognitive science background in at least two disciplines
-
PSYT 455 Neurochemistry (3 credits)
Overview
Psychiatry : Covers biochemical mechanisms underlying central nervous system function. Introduces basic neuroanatomy, CNS cell types and morphology, neuronal excitability, chemically mediated transmission, glial function. Biochemistry of specific neurotransmitters, endocrine effects on brain, brain energy metabolism and cerebral ischemia (stroke). With examples, where relevant, of biochemical processes disrupted in human CNS disease.
Terms: Winter 2012
Instructors: Flores Parkman, Ana Cecilia; Mechawar, Naguib; Wong, Tak Pan (Winter)
-
PSYT 500 Advances: Neurobiology of Mental Disorders (3 credits)
Overview
Psychiatry : Current theories on the neurobiological basis of most well known mental disorders (e.g. schizophrenia, depression, anxiety, dementia). Methods and strategies in research on genetic, physiological and biochemical factors in mental illness will be discussed. Discussion will also focus on the rationale for present treatment approaches and on promising new approaches.
Terms: Winter 2012
Instructors: Srivastava, Lalit K; Bruce, Kenneth Robert; Young, Simon N (Winter)
Winter
3 hours
Prerequisite (Undergraduate): BIOC 212 and BIOC 311, or BIOC 312, or BIOL 200 and BIOL 201, or PHGY 311, or PSYC 308 and an upper-level biological science course with permission of the instructors, or equivalent. Basic knowledge of cellular and molecular biology is required.
Restriction: Open to U3 and graduate students only.
Restriction: Graduate Studies: strongly recommended for M.Sc. students in Psychiatry.
-
PSYT 505 Neurobiology of Schizophrenia (3 credits)
Overview
Psychiatry : Multidisciplinary issues on pathogenesis and pathophysiology of schizophrenia from molecular genetics to cognitive psychology, including current theories of the disorder based on up-to-date evidence from recent research.
Terms: Winter 2012
Instructors: Goto, Yukiori (Winter)
* Students may select either MATH 437 OR PHYS 413, but not both.
Revision, August 2011. End of revision.